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1. Introduction 

Almost all the attempts of getting good approximations to the Schr6dinger equation 
for use in quantum chemistry are based on the standard Ritz variational method. 
However, the application of this method to more complicated many-electron systems is 
impeded by the serious difficulties in the evaluation of the integrals. This fact neces- 
sitates the imposition of severe restrictions on the basis sets employed, which often results 
in the rejection of classes of functions leading to quickly convergent expansions of the 
wave function, as for example explicitly correlated functions. 

To alleviate the integral problem some non-standard procedures have been devised, among 
which the method of moments as discussed by Szondy (for references, see [1 ] ) deserves 
special attention. 

The most promising, however, seems to be a special realization of the method of moments, 
known as the Galerkin-Petrov GP method of obtaining approximate solutions of operator 
equations [2]. This approach preserves some of the advantages of the Ritz method, e.g., 
it allows for an algebraic expression of the problem and eigenfunctions. The GP method 
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has already been applied both to the ground [3-5] and excited states [4] of certain 
quantum mechanical systems. 

Despite the very accurate results obtained in many cases (see e.g. [4] ), some workers 
arrived at rather pessimistic conclusions about the reliability of the GP method. They 
have demonstrated that calculations may fail, partly or completely [3, 5], due to a 
sort of imbalance between the two subspaces used in the GP method. In order to 
understand the kind of trouble involved, as well as to provide a basis for developing 
reliable computational schemes based on the GP method, one of the present authors 
[6] developed a method of description of pairs of finite-dimensional subspaces of the 
I-filbert space. It is hoped that by applying the proposed method, one should be able to 
choose, in a systematic way, those pairs of  subspaces used in the GP method which 
lead to reliable results. 

The object of this paper is twofold, a) to provide a convergence characterization of the 
GP eigenvalues by means of  quantities used in our description of pairs of subspaces; 
b) to demonstrate the usefulness of our approach for setting up reliable computational 
schemes. For the latter aim we have chosen the helium atom and the types of basis 
functions used by Schwartz in his pioneering paper on the GP method [3]. This has 
been done intentionally, because all workers criticizing the reliability of the GP method 
refer to the difficulties met by Schwartz. It seems that our analysis allows us to avoid 
such troubles. 

In the course of our work special attention has been paid to the n-convergence character- 
ization of the GP method. By applying the result of our general analysis, we were able 
to present two systematic ways of selecting pairs of  subspaces leading to reliable results 
with proper n-convergence properties. 

2. The GP Method, and the Description of Pairs of Finite-Dimensional Subspaces 

The essential idea of the GP method when applied to the Schr6dinger equation 

( H -  E)'I, = 0 (2.1) 

consists of the following. Let Fn and G n be two n-dimensional subspaces of  the 
Hilbert space under consideration, which will be called the coordinate and projective 
subspaces respectively. Let P and Q be the projection operators onto F n and Gn. The 
approximation �9 to ,Is is assumed to be an element of  the coordinate subspace, i.e. 
Pq~ = ~. It is determined by the requirement 

Q(H - E")q5 = 0 (2.2) 

}n n �9 F Let us choose the basis sets {q~i i=1 and {xi}i=11n n and G n respectively. The approxi- 
mate eigenfunctions may then be written 

n 
= Z ctr (2.3)  

i=l  

where the coefficients ci are determined from the representation of (2.2): 

(1-1- EM)c = 0, (2.4)  
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where H and M are matrices with the elements H k i  = (Xk, Hr M k i  = (Xk, ~i) and c 
represents a column matrix representing the coefficients ei corresponding to the eigen- 
value E. In the following we shall call M the mixed overlap matrix. Eq. (2.4) represents 
a set of secular equations which may be considered a counterpart of the Ritz variational 
procedure. The two methods become identical in the case F n = G n . 

The results of the GP method, as well as their reliability, depend on the choice of the 
pairs of  subspaces involved. For this reason any application of this method should be 
accompanied by a careful analysis of this pair. Recently [6] one of the authors proposed 
a method for characterizing pairs of finite dimensional subspaces which is expected to be 
helpful in making the proper selection of coordinate and projective spaces leading to 
reliable realizations of  the GP method. 

The method makes essential use of the operator 

V = P Q P .  (2.5) 

Let us denote by {~3i}in=l the set of orthogonal eigenvectors of V corresponding to the 
eigenvalues M 2, i = 1, 2 , . . . ,  n. This set provides a special basis for the space F n. We 
can easily define a corresponding basis set in G n. Let s be the number of non-zero 
Mi-values. We can define s functions 

ui = M] -1Qvi (i  = 1 , 2  . . . . .  s). (2.6) 

This set should be augmented by (n - s) orthogonal functions of Gn which are, in 
U $ . addition, orthogonalized to the members of the set { i}i=1 The two orthonormal basis 

O n n sets { i}i=1 and (Ui}i= 1 satisfy the relation 

(u i, vi) = Mi6i j  (i, j = 1 , 2  . . . .  , n).  (2.7) 

Both the M i numbers as well as the v i and u i functions have several interesting properties 
which have been discussed in [6]. It has also been shown that the set o f M  i numbers 
provides means for characterizing pairs of finite dimensional subspaces. Many indices 
for the characterization of the "proximity" of two subspaces may be defined by means 
of the M i numbers [6]. The problem which of them are the best from the practical 
point of view seems to be still open. In Sect. 3, for example, a new index manifested 
itself in the course of the convergence analysis. 

3. A Convergence Characterization of the Eigenvalues 

Let us recall that calculations by means of the GP method are usually performed by 
taking for the coordinate-space-basis elaborate functions which are capable of  fitting 
the exact eigenfunction very accurately. The projective basis {Xi} may not have this 
property, but it should lead to relatively simple integrals. 

Let us define the set n {~i}i=l of orthonormal functions which diagonalizes the standard 
energy matrix l~([Iii = (~i, HO/)) in the coordinate space Fn,  i.e. q5 i = N~=laij~j are 
approximations to the eigenfunctions of (2.1) obtained by the Ritz variational method. 
The approximate eigenvalue corresponding to q~i is denoted by E}. It is a well-known 
fact that, if n ~ ~, then E} ~ E i (E i = the exact eigenvalue) from above, i.e. E '  i - E i ~ O. 
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Let us assume that all 214/numbers for the considered pair of  subspaces, Fn and Gn, 
{r n are different.from zero, 3//:/: 0. It is then possible to define in G n a set i}i=l, I~i = 

Y,~-_lbijxj, with the proper ty  

(Pj, Ok) = fijk- (3.1) 

Let us make the observation that these orthogonality relations are invariant with respect 
to any simultaneous unitary transformation of  the basis sets {Oi} and {I'i}, i.e. 

t 

ok)  = 8,.k, (3.2) 

where 

r~ = ~ UilI" h dp~ = ~. UitOi. (3.3) 
l t 

The proof  of  (3.2) is straightforward : 

(ri,  % )  Y * , , = U i l U ~ ( F 1 , 0 m ) =  ~ u?zgk~=~ik .  
l,m l 

We may further write 

r i = O i + zXri.  (3.4) 

From (3.2)and the orthogonality of  the Oi's , we have 

(fir  k, Oi) = 0 (i, k = 1, 2 . . . .  , n), (3.5) 

i.e. 6F k is orthogonal to the whole subspace Fn. 

We use the notation E}' for the eigenvalues obtained by  means of  the GP method.  

In order to get an insight into the convergence properties of  the approximate eigen- 
values one considers the difference IE t. - E i [, which may be given the following estimate: 

[E i - E~' l ~ ( E } -  E l )  + IL~' - E t  [. ( 3 . 6 )  

As we have already mentioned, the first term of the right-hand side sum tends to zero as 
the dimension of  the coordinate space increases. Therefore, the convergence properties 
of E~' are essentially determined by  the second term of (3.6). 

We shall now prove that  this term fulfils the inequality 

IE;' - S,.'l ~< ~ l (6rk ,  ( ~ -  E,.)6%)1, (3.7) 
k=l  

where 

~o;  = o;  - ~,~%., %. = (,I% O;) (3.8) 

and qs k is the exact eigenfunction of  (2.1). 

Proof. Let us consider the eigenvalue problem equivalent to (2.4) 

= 0 ,  

where H~'k = (I'i, HOi). It  is obtained from (2 .4 )by  taking proper linear combination of 
the equations involved. The eigenvaiues E are now denoted by  E".  
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The use of  (3.5) and the definition of ~i  enables us to write 

( (5 P i, H~g), if  i v~ k 
" = ( 3 . 9 )  

Hik ~(cb i + 5Fi, H~bt), if i =/c 

We now apply the Gerschgorin theorem [7] for the localization of  the eigenvalues of  
H "  (see Appendix) and obtain 

IE 7 - g'i~ I < ~ IH'~i [ . (3.10) 
kr 

According to (3.9) we have further 

IE}' - H~'i[ = [E}' - E} - (8Pi, H~i) l, (3.11) 

and 

lET - E}l ~ ~ I (~rk,  g ~ t ) l .  (3.12) 
k 

Since ep i = 7icbi + 6opi, one obtains 

(~rk, H~t) = 7iEi(~ rk, at) + (~rk, HS~i) -- Et(~rk, %) + (srk, ( /4-  E i ) ~ ) .  

(3.13) 

By combining (3 .13)and (3 .5)we may write 

( 6 P k ,  HdPi) = ( ~ F k ,  ( H -  Ei)6rbi). (3.14) 

Substitution of (3.14) into (3.12) concludes our proof. 

We now turn to the inequality (3.7). Use of  the Schwarz inequality enables one to 
write 

IEI: - E'il ~< [[(H - gi)5~Pill -D, (3.15) 

where 

D = ~ 116Pk II. (3.15a) 
k 

This relation provides a convergence characterization of the eigenvalues of  the GP 
method. The last sum may be considered as a measure of  the closeness of  the coordinate 
and projection spaces, because it vanishes if two spaces are identical. Unfortunately, 
this type of measure is of  no use for the GP method, because in order to construct 6F k 
one has to perform a Ritz type calculation in the coordinate space. 

It seems to use that  one can obtain an idea about the magnitude of E e [16P k II from the 
analysis of  (Ek I[~Fk 112) 1/2. 

The latter sum is invariant with respect to a simultaneous unitary transformation of the 
{eP i} and {Xi} basis sets, i.e. 

115P~l[ 2 = ~ 115Pkll 2, (3.16) 
k k 

! t 
where 8P~c = F~c - ~k,  and Fk, ep~ are defined by  (3.3). Now, 
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and 

 r'k = Ukl6Pl (3.17) 
l 

I I~r~ l l  2 = ~ ~ U~Ukm [ l~Pkll 2 = ~ [18Czl[ 2 
k k l ,m l 

which proves Eq. (3.15). 

We next consider the unitary matrix which transforms the {cpi} basis into the (vi} basis 
defined in Sect. 2. This transformation, when applied to {Fi}, gives rise to a new set 
{ n Ui}i=l with the property 

(Ui, vk)  = 5ik q ,  k = 1, 2 , . . . ,  n). (3.18) 

The functions U i are not normalized. 

Bearing in mind that the {vi} and {ui} basis sets which fulfil Eq. (2.7) are unique for a 
given pair of subspaces, and using Eq. (3.18), one gets 

ui = g i g  

where Ni is a normalization constant. One easily finds that N i = M ]  -l �9 

Now, 5F'i =M]-aui  - vi, 116F~[I 2 = (1 - M 2 ) M [  2 . With this in hand, we have by Eq. 
(3.15) 

1/2 2 "2 ~1/2 

1 
The quantity R is specified in terms of the M i numbers discussed in Sect. 2. The value 
of R is zero if two subspaces are identical ( a l l M  i = 1) and tends to infinity in case 
the two subspaces involved comprise parts orthogonal to the other subspace (some 
M i = 0). Hence R may be considered as an index for the characterization of the proxim- 
ity of the coordinate and projective spaces. It is obvious that R does not provide so 
much information like sets of several or all Mi numbers. 

From the well-known relation 

a <<. la i l  <~ n a 
i=l  i=l  

we have by (3.15) and (3.19) 

R < D  ~ x/hR. (3.20) 

Unfortunately it is rather difficult to obtain more precise bounds to D either in terms 
of R or other functions of the M i numbers. 

An analysis of the inequality (3.15) when combined with the rough estimates of D 
given by (3.20) allows us to grasp an idea about the convergence characterization of the 
GP method. It follows from the properties of  the Ritz procedure, that if n increases 
the norm of ( 1 1 -  Ei)54p i decreases. Therefore in order to ensure the reduction of the 
bounds to IE" - E i l  with increasing n, it is necessary that the increase of the D value 
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is sufficiently slow. The best situation is, of course, whenD is almost constant. Relation 
(3.20) says, that in the case of finite dimensional subspaces, one can avoid significant 
changes of  the D values by choosing the coordination and projective subspaces in such 
a way that the R values do not change considerably. Futhermore, an inspection of 
(3.15) reveals that in the case of a given coordinate space, i.e. for fixed [[(H - E i ) ~  i II, 
one can improve the accuracy by choosing the projective space which minimizes D. 
We expect that this requirement could be fulfilled by minimizing the R numbers. 

4. Numerical Examples for the Ground State of the Helium Atom 

In this work the GP method is applied in the calculation of energy for the helium atom 
in its ground state. 

For reasons that have been mentioned in the Introduction, we have chosen the basis 
sets of the coordinate Fn and projective Gn spaces in a way similar to that of the paper 
of Schwartz [3]. 

We consider the following sets of basis functions: 

(A) Hylleraas basis: 

(A') e-aSslumt 2n, with s = r 1 + r2, t = r 1 - r2, u = r12. (4.1) 

(A") As in (A') with the restriction to odd m's. (4.2) 

(B) Correlation factor basis: 

(B') e-aSslu 2m t2n(1 + flu) (4.3a) 

(B") e-aSslt2n(1 + flu) (4.3b) 

(C) Configuration interaction basis: 

(C') e-aSslu2mt 2n (only even powers of u) (4.4a) 

(C") e-aS Jr 2n (4.4b) 

The basis functions will be grouped and ordered according to the value of the sum 
l + m + 2n. We report the results of several series of computations. In all cases discussed 
below, basis sets of the coordinate subspace used in consecutive computations differ 
by such groups. This convention has determined the dimensions of the secular problems 
in all cases, e.g., in the case of the basis set A'  we have n = 3, 7, 13 respectively. 

}n n At the beginning of each calculation the sets of basis functions (Xi i=1 and {q5i}i= 1 were 
chosen. For these sets we performed the computations of the following quantities: 
a) the M i numbers, and theR index, b) the energy value E"  using the GP method, c) the 
variational energies E '  and Ep within the framework of the Ritz method for the basis 
functions of the coordinate and projective spaces respectively. 

The M/numbers were obtained by diagonalizing the matrix representation of the 
operator (2.5) for the basis sets o f F  n and G n [5] 

P = A~I/2M +2x.~ 1MAq~ 1/2, (4.5) 
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M denotes the mixed overlap matrix used in Eq. (2.4), A~ and A x are metric matrices 
of the basis sets {r and (Td} respectively, i.e. (2x~)ik = (@, ~k), (Ax}k = (X/, Xk). 
E"  was obtained as the lowest eigenvalue of the non-symmetrical eigenvalue problem (2.5), 
which has been further transformed to the form 

( M - 1 H  - E ) c  = 0. (4.6) 

The eigenvalues of  this problem have been obtained by  means of the QR algorithm [7]. 

The variational energies E '  and Ep are useful as criteria of  the accuracies attainable in 
the coordinate and projective subspaces respectively. They have been obtained as eigen- 
values of  the symmetrical problems 

(Hr - E2xo)c = 0 and (H x - EAx)C = 0, (4.7) 

where H~, and H x are matrix representations of  the Hamiltonian in the {r and {X} 
basis sets respectively. All energies are reported in atomic units. The exact energy of 
the helium-atom ground state is E = -2 .903724 .  The computations were preformed on 
an ODRA-1204 computer  with a precision o f t e n  digits. 

4.1. The (A' ,  C' ) -Type  Pairs o f  Subspaces  

The A' ,  C'- type pairs o f  subspaces, with a = 1.85, were extensively used by  Schwartz 
[3] in his (1, 3) case. They led to very erratic results and were used to support objections 
concerning the reliability of  the GP method (see, e.g. [10] ). Our computations con- 
firmed the behaviour found by  this author. A general property of  the basis sets used 
by Schwartz is that they are characterized by  very large values of  the R index given 
by  (3.20). There are even cases when R = % e.g. for n = 3, if  the coordinate and pro- 
jective bases are 

e-aS {1, s, u}, (4.8) 

and 
e - a S ( l ,  s, s 2 } (4.8a) 

respectively, the Mi numbers are (0, 1, 1). 

We tried to see whether it is possible to get reliable results using basis sets o f  the form 
A '  and C'. 

It turned out that for a fixed coordinate basis one can select the projective basis set 
for whichR is relatively small. This is also true for the case n = 3. For example, the 
projective basis 

e - a S { l ,  s, u 2 } (4.8b) 

corresponds to the M/numbers (0.874, 1, 1) and R = 0.56. The GP energy E"  = - 2 . 8 9 0 9 6  
in close to the Ritz energy E '  = -2 .89113 .  The variational result for the projective space 
is Ep = -2 .87809 ,  

A similar situation was found for n = 7. It was also possible to find projective spaces 
leading to reasonable R values. The smallest value of  this index, R = 5.65, was found for 

e -~s {1, s, s 2, u ~ , t 2 , su 2 , u2 t2} .  (4.9) 
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For this case E"  = -2 .90253 ,  whereas the variational results for the F n and G n sub- 
spaces were E '  = - 2 . 9 0 3 4 0  and Ep --- -2 .89598  respectively. The M i numbers are 
(0.176, 0.773, 1, 1, 1, 1, 1). 

The values of  R may be minimized not  only by proper choices of  the basis sets. It is 
also possible to make use of  the non-linear parameter a in the {?(i} set. For example, in 
the case of  the basis set (4.9) we obtained for ~ = 2.1 the valueR = 5.3 and the very 
good energy value E"  = -2 .90333 .  It should however be mentioned that such behaviour 
has been observed only for relatively small R values. 

In order to get an idea about the n-convergence in the case of the (A'C')-type pairs, let 
us perform the calculations for n = 13. In most cases the R indices were very large and 
the energies very poor. But it was possible to make selections similar to those in (4.8b) 
and (4.9), e.g., let us take the projective space obtained from (4.9); by adding the 
following functions 

e -as (s 3 , st  2, t 4 , s 2 u 2 , u 4 , su 2 t 2 }. (4.9a) 

The results are: R = 59, E" = -2 .89229 ,  E '  = -2 .90363 ,  Ep = -2 .89867 .  The M i  numbers 
are (0.017, 0.118, 0.687, 0.972, 0.987, 1, 1, 1, 1, 1, 1, 1, 1). We see that the energy E" 
became worse than for n = 7. Such behaviour was typical for the (A 'C ' )  pairs. The reason 
for it is the specific structure of  the projective space which with increasing n differs more 
and more from the coordinate one. This fact is manifested by a sharp increase of R. 

Let us have another look at the projective spaces (4.8b), (4.9) and (4.9) + (4.9a) leading 
to relatively small R's.  They may be obtained from their coordinate counterparts by  the 
following replacements: u -~u 2, (u,  su) -~(u2 t 2, su2), and (u, su, s2u, u t  2, u 3) ~ ( t  4, 
su 2 t 2, s 2 u 2 , uZ t 2 , u 4).  We can see that with increasing n functions comprising low odd 
powers of  u are replaced by functions comprising increasingly higher powers of that 
variable. Therefore the distance between the two subspaces increases quickly when n 
increases. 

4.2. A Special  Matching Procedure 

It turned out to be possible to improve the situation just mentioned. This can be done 
by removing functions comprising even powers of  u from the coordinate basis set, i.e. 
by using the set A". The projective set is still defined by the set C'. Now, one can 
describe the replacements as 

e-CeSslu2m +1 t2n ~ e-~Sslu 2m +2 tZn. (4.10) 

In the present case, an increase of  n causes substitutions of  functions comprising odd 
powers of  u by functions with even powers of  u, obtained by  enlarging the odd ones by 
one. Therefore, there are no reasons for such a fast increase o f  the distance between 
subspaces as in Sect. 4.1. In order to diminish the distance between Fn and Gn we have 
rescaled the projective basis functions involved in the replacement (4.10) to obtain 
maximum overlap integrals between the functions paired in (4.10). This requirement is 
fulfilled for 

a '  =a (1  + a / ( l + 2 m + 2 n + 4 ) ) ,  where a = 1 (4.11) 
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To obtain an idea about the distance of  the subspaces we found the 3/ /numbers and R 
indices for various n's. The properties of  the first are displayed by the following set 
obtained fo rn  = 11 (0.684, 0.874, 0.918, 0.991, 1.000, 1, 1, 1, 1, 1, 1). We see that the 
discussed method of  matching subspaces results in M; ' s  that are rather close to unity. 
The R indices for various dimensions are collected in Table 1, together with the energies 
obtained. The first quantities are unexpectedly low even for large n-values. The GP 
energies are close to the exact one. The results exhibit systematic n-convergence. 

Table 1. R, Mmi n and approximate energies for the A "B P-type pairs of subspaces 

n 

a 3 6 11 17 26 

0.8 

R 0.6 0.9 1.3 1.8 2.3 
Mmi n 0,874 0.770 0,684 0.613 0,554 
- E  t 2.89113 2.90281 2.90341 2.90358 2,90364 
-Ep 2.87809 2.89574 2.89837 2.89989 2.90082 
- E "  2.89096 2.90098 2.90248 2.90296 2,90321 
I E "  - EPi 0.00017 0.00183 0.00093 0.00062 0,00043 

R 0.2 0.3 0.5 0.7 1.0 
Mmin 0.976 0.962 0.937 0.902 0,858 
- E p 2.89113 2.90281 2,90341 2.90358 2.90364 
- E "  2.88976 2.90127 2.90264 2.90305 2,90326 
IE" - EP[ 0.00137 0.00154 0.00077 0.00053 0.00038 

We attempted to diminish the R indices still more. We managed to do this by  taking 
values of  the parameter a in (4.1 I )  different from unity. For the cases n = 3 and n = 6 
min imumR was obtained for a = 0.8. We used this value for the whole series. The 
results are listed in the lower part of  Table 1. The R ' s  are now about half the previous 
ones, and the convergence properties of  E"  became still better. 

We would like to emphasize the fact that  all the results presented in Table 1 are in agree- 
ment with the conclusions of  the general analysis presented in Sect. 3. 

4.3 A Projection Procedure for Obtaining the Projective Subspace 

In the previous part of  this paper we demonstrated how by means of  maximizing the 
overlap integrals of  individual pairs o f  functions it is possible to obtain a considerable 
reduction o f  the R indices. We would now like to suggest a systematic procedure for 
constructing close pairs o f  subspaces. 

We start by fixing the (q~i}n= 1 basis of  the coordinate subspace. Next, we select a set of  
functions m 07i}i=1 with m/>  n. The ith member Xi of the basis of  the projective basis is 
then obtained by projecting the function ~b i onto the subspace spanned by {r/i} [9], i.e. 

~i = Pl]~i = k~, l (A~ 1 )k l(~l, ~)i)~k, (4.12) 
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where Pn denotes the projection operator associated with the manifold {~i) and Ar is 
the metric matr ix  of {~i}. The secular equation for the present case may be writ ten in 

the form 

(MT z2~I H - E"MT A~I M)c = O. (4.13) 

We used the sets A '  and C' for {~bi} and {r/i} respectively. 

Table 2. Numerical results for the projection method of generation of the projective basis 

m 

n 5 8 14 20 30 40 - E  f 

13 

R 0.40 0.23 0.16 0.12 0.09 0.08 
Mini n 0.930 0.974 0.988 0.993 0.996 0.997 
-Ep 2.87870 2.88359 2.88605 2.88743 2.88830 2.88887 2.89113 
-E"  2.88966 2.88998 2.89029 2.89049 2.89063 2.89072 
IE"-Etl  0.00147 0,00115 0.00084 0.00064 0.00050 0,00041 

R a 0.86 0.58 0.43 0.34 
Mini n ~0 0.771 0.877 0.925 0.950 
-Ep 2,89647 2.89868 2.89991 2.90072 2.90127 2.90341 
-E" 2.89352 2.90278 2.90297 2.90308 2.90315 
IE"-E~L 0.00989 0.00063 0.00043 0.00033 0.00026 

R a 57 1.6 1.1 
Mini n ~0 0.018 0.574 0.712 
-Ep 2.89887 2.90015 2.90094 2.90148 2.90364 
- E "  2.90990 2.89728 2.90348 2.90351 
IE"-Etl  0.00626 0.00636 0.00016 0.00013 

-E~  2,89376 2.89648 2.89890 2.90023 2.90105 2.90156 

a A very large number computed with a significant numerical error. 

The results are collected in Table 2. We can see that for m > n + 1 the R indices are 
small and decrease considerably when m increases. The M i numbers are close to unity,  

e.g. for n = 13, m = 30 we have 

(0.574, 0.846, 0.977, 0.996, 0.999, 1, 1, 1, 1, 1, 1). (4.14) 

The GP energies, E" ,  together with the variational results E '  provide a convincing 
illustration of  the relation (3.15). We can see from that  table that for a given n (i.e. 
fixed value of  I I ( g -  E)Sq5i]l)the energy E "  improves as m increases (i.e. R and 
2/II~Fi II decreases). On the other hand, for increasing n 's ,  when choosing m-values 
giving rise to  R-indices of  comparative magnitude, a clear-cut n-convergence may be 
observed; In order to get an energetical characterization of  the manifold spanned by  
{~i}ml, we computed the Ritz variational energies E for various m's. The results are 
presented in the lowest row of Table 2. We see that  in the cae of  small R ' s  the GP 
results are considerably closer to the exact energy than the respective E values. 
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4.4. The (B', C') -Type Pairs of  Subspaees 

In this case we take the basis o f f  n in the form (4.3a) comprising a common correla- 
tion factor (1 +/3u), whereas the G n subspace is of  the configuration interaction type. 
These bases have been used by Schwartz [3],  a = 1.85,/~ = 0.5, and led to reliable 
results. The energy values disclosed correct n-convergence and were close to their 
variational counterparts E ' .  This behaviour becomes clear when the M i numbers are 
taken into account, e.g., for n = 14 we obtained the set 

(0.933, 0.956, 0.959, 0.972, 0.980, 0.984, 0.990, 0.998, 0.999, 1.000, 

1.000, 1.000, 1.000, 1.000). (4.15) 

The R-values resulting from our computations were small and changed slowly. Table 3 
summarizes the results o f  the calculations. It lists, for different n-values, the R4ndices, 
the minimum Mi value, Mmin, the GP energy E" ,  and the variational energies E', Ep. The 
differences IE" - E '  l, which have been analysed in Sect. 3, are also presented. 

Table 3. Numerical results for the B 'C'-type pair of subspaces 

5 8 14 20 

R 0.4 0.5 0.7 0.8 
Mmi n 0.957 0.945 0.933 0.922 
- E  r 2.90164 2.90267 2.90324 2.90347 
-Ep  2.89376 2.89648 2.89890 2.90023 
- E "  2.90613 2.90460 2.90421 2.90402 
I E " -  E'I 0.00449 0.00193 0.00097 0.00055 

The results collected in Table 3 support the conclusions of  the discussion presented in 
Sect. 3. The subspaces under discussion are close in the sense of  the R4ndex character- 
istics. Moreover, the way in which the coordinate basis functions are obtained from the 
projective ones allows for enlarging the dimensions of  the problem without considerable 
increase of R or decrease ofMmi n. Such behaviour has never been found for the basis 
sets discussed in Sect. 4.1. 

It seems to us that pairs of  subspaces defined by  basis sets constructed in such a way 
that the members of  one of  them are obtained from their counterparts of  the second by 
multiplication by a correlation factor should lead to small R4ndices, and therefore, 
may be useful in the formulation of  reliable GP schemes. 

4.5. The (B", C")-Type of  Subspaces 

In order to support the latter conjecture, we performed the computations for the case 
in which the coordinate space is defined by the set B", whereas the projective one is 
defined by the set C", which consists of totally uncorrelated (i.e. comprising no u 
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variables) functions, The set B" involves functions used in the standard correlation 

factor method [8].  We performed the calculations for two choices o f  the coordinate 
space which differ by  the value of  13 in the correlation factor. This was caused by  the 
fact that  for/3 = 0.5 the coordinate space is very ineffective in representing the exact 

wavefunction. This situation has changed for ~ = 0.29. This value of  the parameter  has 

been obtained by  minimizing E '  for n = 6. 

The M i numbers disclosed a behaviour similar to that  obtained for n = 12: 

(0.929, 0.945, 0.966, 0 .981,0 .985,  0 .991,0.993,  0.995, 0.997, 0.998, 0.999, 

0.999) a = 1.85,13 = 0.5 (4.16a) 

(0.959, 0.966, 0.979, 0.988, 0.992, 0.995, 0.996, 0.998, 0.998, 0.999, 0.999, 

9.999) a --- 1.85, ~ = 0.29 (4.16b) 

One can see that  these two sets exhibit  the same behaviour as in the case of  the set 
(4.15). The same is true of  the R-indices and of  the minimal M i values which are listed 
in Table 4. The results of  the energy calculations are also collected in this table. The 
energies obtained for 13 = 0.5 are rather poor.  This is caused by  the fact that  bo th  sets 
involved lead to very slow convergence of  the expansion of the ground state wave- 
functions. We are in a situation where I [ (H-E)6qsi  II of  (3 .15) is  almost constant. Because 
R increased considerably along the series, one is, due to the inequality (3.15), not sur- 
prised to find a slight deterioration of E".  The results for 13 = 0.29 behave quite dif- 
ferently. Although the R indices are only slightly lower than in the previous case a 
considerable improvement o r E "  as well as n-convergence has been obtained. This is 
obviously due to the fact that  the coordinate basis set is muchbe t t e r  suited for the 
approximation of  the gound state wavefunction than in the previous case. 

Table 4. Numeiical results for the B "C'-type pair of subspaces 

n 

4 9 12 16 20 

0.5 

0.29 

R 0.4 0.6 0.7 0.8 0.9 
Mmi n 0.959 0.939 0.929 0.921 0.916 
- E  r 2.89685 2.89696 2.89700 2.89701 2.89702 
-Ep 2.87781 2.87843 2.87867 2.87879 2.87886 
-E' , '  2.91419 2.91433 2.91440 2.91443 2.91445 
IE"-  E'L 0.01734 0.01737 0.01740 0.01742 0.01743 

R 0.3 0.4 0.5 0.6 0.7 
Mrnin 0.978 0.965 0.959 0.953 0.947 
- E '  2.90193 2.90222 2.90232 2.90236 2.90239 
-Ep 2.87781 2.87843 2.87867 2.87879 2.87886 
- E "  2.90248 2.90283 2.90303 2.90310 2.90314 
IE" - E ' I  0.00055 0.00061 0.00071 0.00074 0.00075 
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These results, together with those obtained in Sect. 4.4, seem to indicate that the use 
of coordinate basis sets with correlation factors provides a possibility for constructing 
subspaces well suited for setting up reliable GP schemes. 

5. Concluding Remarks 

In this paper we have presented a convergence characterization for the energy values 
obtained within the framework of the Galerkin-Petrov method. It was found that the 
accuracy of the results may be related to the indexR defined by means of the M i 
numbers [5], which characterizes in a detailed way the distance between two n- 
dimensional subspaces of the Hilbert space. 

It has been extensively demonstrated for the helium-atom ground state that reliable 
results for the energy can be obtained if proper attention is paid to the choice of the 
pair of subspaces involved. Such choices can be made in systematic ways. We presented 
three methods leading to proper pairs of subspaces and showed that for these the GP 
method is reliable. 

Our approach allowed for an understanding of the sort of trouble met by Schwartz [3], 
and provided a method of avoiding it from the very beginning. 

The present method may be applied to systems containing more than two electrons. 
This can be realized, for example, by taking the subspace used in the combined con- 
figuration-interaction-Hylleraas-type approach C1-HY (see, e.g. [11 ] ) to be the coordi- 
nate subspace. The projective subspace is then defined by a configuration-interaction- 
type basis set chosen according to our method. Such approach reduces drastically the 
numerical difficulties met by the variational calculation within the CI-HY basis. The 
latter method involves five types of two-, three-, and four-electron rij integrals (according 
to the classification of Sims and Hagstrom [12] ). The full application of our procedure 
involves only the two most simple types of two- and three-electron rij integrals (types 1 
and 2 of Fig. 1 in [12] ). A practical realization of this idea is now in progress in our 
group. 

We hope that the present work will strengthen the confidence in the reliability of the 
GP method. 

Appendix: Discussion of the Relation (3.10) 

Gerschgorin's theorem makes only the statement that E~' lies in one of the Gerschgorin's 
circles. Its placement in the circle embracing H u is ensured if, in the left-hand eigenvector 
c + of H", i.e. c ( H  " - E/) = 0, the inequality Ic~l ~ Ic[I is fulfilled for all k =# i. We have 
then, for 0 = 2kc~Fkl ,  

_ = CkHki.  (0, H ~ i )  = Y ,  + . . . . . . .  + + . . . . .  + " ' Ckl"lki = 1~ r a n d  c i ~L i n i i  ) 
k k ~ i  

Hence, 

IE:' - Hii l  <<, 7--47, I g k i l  <<- ~ IHkll  1 
k#=i 1r i I k 
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which leads to (3.9). The condi t ion  I c~[ ~< [c~l is fulfilled for all non-pathological  choices 
of the coordinate  and projective spaces. 
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